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WHAT IS A KNOT?

By a knot, we mean a mathematical representation of a knotted string, with the ends glued to-
gether. Figure 1 depicts the stevedore knot in these terms. Knots are studied for their complex
topological properties. Applications of knot theory are found in string theory and problems related
to protein folding and DNA unknotting.
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Figure 1: The stevedore knot. A knot is tied in (a), and the ends glued together in (b)

BACKGROUND

Two knots are said to be equivalent if one can be changed to the other by continously deforming
the space around them, via ambient isotopy (i.e. reshaped without cutting or gluing). Without
much effort, 1t can be seen that the stevedore knot can be reshaped into 61 in Figure 3. But can
the same be done for 69?7 The answer 1s no, although checking every single possible way to re-
shape a knot 1s not an easy feat. For this reason, we study properties that are invariant under such
deformations. These properties are called knot invariants.
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Figure 2: The knot 65 on the left is not equivalent to the stevedore knot on the right

The knot group of a knot K, denoted 7(K), is a knot invariant and algebraic object that en-
codes information about the knot as well as its geometric properties. We can therefore study the
algebraic properties of the knot group so as to study the knot itself. One such algebraic property is
bi-orderability, meaning the elements of 7(/K) can be given a strict total ordering that is invariant
under mutliplication on the left or right by another element.

What may be surprising is knots can be tabulated in massive databases [1]. The knots are enu-
merated beginning with the simplest ones (fewer crossings), and the knots become more compli-
cated (more crossings) as one reads through the table. Below 1s an example of a knot table listing
all knots up to equivalence with 7 or fewer crossings.
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Figure 3: Knot table of all knots with 7 or fewer crossings

OBJECTIVES

e To discover new theorems that determine bi-orderability of knot groups and are simple
to use. Current theorems require complicated conditions on the topology of a knot K or al-
gebra of 7(K) in order to determine bi-orderability. We wish to provide tools to determine
bi-orderability of knot groups based on simple properties of the knot.

e To perform a computer survey of all knots with 12 or fewer crossings and provide a list
of knots for which the bi-orderability of the knot group can be determined. Previous the-
orems apply to 499 of all 2977 knots with 12 or fewer crossings (roughly 17%) [2]. Will the
new theorems improve this number?

METHODS

We will use all possible theorems to achieve our objectives, but specifically, we concentrate our
attention on Theorem 1.

Theorem 1. [3]| Let K be a knot, and suppose that 7w(K) has a presentation of the form {a, b|w)
where w is tidy. Let A (t) denote the Alexander polynomial of K. Then:

1. If 1(K) is bi-orderable, then A g (t) has a positive real root.
2. If w is monic and all the roots of Ay (t) are real and positive, then w(K) is bi-orderable.

3. Ifwis principal, A (t) = ag+- - -+ayg_1t9" 1 —mt? where ged{ay, ..., a1} = Land ay_1 is
not divisible by m, and all the roots of A (t) are real and positive, then 7(K) is bi-orderable.

The Alexander polynomial Ay (¢) is another easy-to-compute knot invariant. This new theorem
can potentially be applied to many knots. Unfortunately, the conditions required on (/') can be
quite tedious to verify. We wish to find infinite families of knots that satisfy these conditions, thus
achieving the first objective. Next, we wish to explicitly find all knots with 12 or fewer crossings
that satisfy the conditions, thus partly achieving the second objective.

RESULTS

THEORETICAL RESULTS

In line with the first objective, we were able to prove two major theorems involving 2-bridge
knots. These knots are those that appear as in Figure 4, where each box 1) represents twisting
two segments of string together a certain number of times. These knots densily populate the knot
table, with the first knot of bridge index greater than 2 being 85, the 20" knot in the table.

Figure 4: Standard construction of 2-bridge knots

This first theorem concerns all 2-bridge knots:

Theorem 2. Suppose that K is a two-bridge knot with Alexander polynomial Ay (t). If 7(K) is
bi-orderable, then A\ i (t) has a positive real root.

The next theorem concerns twist knots. These make up an infinite subfamily of 2-bridge knots.
Figure 5 depicts the twist knot /.
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Figure 5: Twist knot K,

With the following theorem we can determine bi-orderability of the knot groups of all twist
knots.

Theorem 3. Let ¢ > 3 be an odd integer. If ¢ = 1 (mod 4) then w(Ky) is bi-orderable, and if
q = 3 (mod 4) then m(K) is not bi-orderable.

COMPUTATIONAL RESULTS

We wrote a computer that would take 7(K') as input for a given knot K, and output which condi-
tions of Theorem 1 are satisfied. Next, with the aid of a computer, a survey of all 2977 knots with
12 or fewer crossings was completed: 7( /K ) was calculated using the computer program SnapPy
[5], then Theorems 1, 2 and 3 were applied whenever possible, as well as the previous theorems
in [2]. The following 1s a summary of the results concerning knots for which the bi-orderability
of the knot group could not previously be determined:

Figure 6: Newly discovered knots with bi-orderable knot groups. From left to right: 6, 8¢, 101, 10,3 and 12agg3

¢ 3 knots have bi-orderable knot groups by Theorem 3: 61, 81 and 10;.

e 2 knots have bi-orderable knot groups by explicity verifying the conditions of Theorem 1: 1013
and 12ag3.

e 79 knots have non-bi-orderable groups, by Theorem 2.

e 107 knots have non-bi-orderable groups by explicity verifying the conditions of Theorem 1.

Two mistakes in the literature [2] were rectified. Including previous results, the bi-orderability
of 689 out of the first 2977 has been determined, which 1s roughly 23%.
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