Constructions of hypergraphs free of certain 3-uniform 3-partite hypergraphs

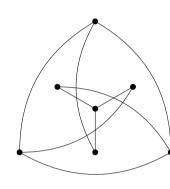
BACKGROUND

Definition 1. Given a graph F, the extremal number for F, denoted ex(n; F), is the maximum number of edges in a graph on n vertices that does not contain F as a weak subgraph.

Turán¹ found the extremal numbers for all complete graphs in 1941, while for most graphs the exact extremal numbers are not known. In 1954, Kővári, Sós, and Turán² provided the following upper bound for bipartite graphs, where $s \le t$:

$$ex(n; K_{s,t}) \le \left(\frac{1}{2}(t-1)^{1/s} + o(1)\right)n^{2-1/s}.$$

Lower bounds for extremal numbers are achieved by providing constructions of F-free graphs with many edges. The constructions by Reiman 3 of $K_{2,2}$ -free graphs using finite projective planes have $\left(\frac{1}{2}+o(1)\right)n^{3/2}$ edges.



Construction of a $K_{2,2}$ -free graph by Reimann using a coordinatization of the Fano Plane.

The exact extremal numbers for $K_{2,2}$ and specific values of n have been found, including the result by Füredi⁴ that if $q \ge 13$ is a prime power and $n = q^2 + q + 1$, then $ex(n; K_{2,2}) = \frac{1}{2}q(q+1)^2$. In 1966, Brown⁵ provided the following construction of $K_{3,3}$ -free graphs:

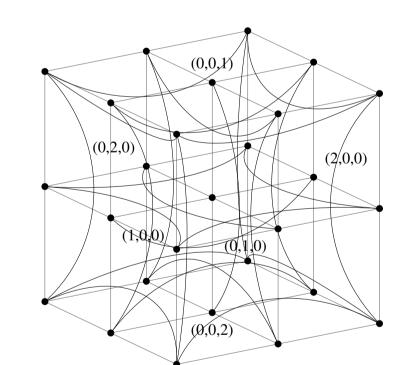
Definition 2. Fix an odd prime p. Let $r \neq 0$ be a quadratic residue modulo p if $p \equiv 3 \pmod{4}$, and a quadratic nonresidue if $p \equiv 1 \pmod{4}$. Define the graph G = (V, E) as follows:

- Let $V = \mathbb{F}_p^3$; then G has p^3 vertices.
- For all $(a,b,c) \in \mathbb{F}_p^3$, define the sphere

$$S(a,b,c) = \left\{ (x,y,z) \in \mathbb{F}_p^3 \mid (x-a)^2 + (y-b)^2 + (z-c)^2 \equiv r \pmod{p} \right\}.$$

These spheres have $p^2 - p$ elements.

• $\{u, v\} \in E$ if and only if $u \in S(v)$; there are $\frac{p^3}{2}(p^2 - p)$ edges.



Brown's construction for p = 3.

Similar to spheres in \mathbb{R}^3 , three spheres in \mathbb{F}_p^3 intersect in at most 2 points, and so there is no $K_{3,3}$. Letting $n=p^3$, G has $\frac{n^{5/3}-n^{4/3}}{2}$ edges, and so

$$ex(n; K_{3,3}) \ge \left(\frac{1}{2} + o(1)\right) n^{5/3}.$$

Füredi⁶ showed that $ex(n; K_{3,3}) \le \left(\frac{1}{2} + o(1)\right) n^{5/3}$, making the bound tight. For a prime power q, Alon, Rónyai, and Szabó⁷ provided a construction with $n = q^3 - q^2$ vertices and $\frac{1}{2}(q^5 - q^4 - q^3 + q^2)$ edges, and so improve the o(1) factor in the lower bound for $ex(n; K_{3,3})$. In fact, they show that for $t \ge (s-1)! + 1$, $ex(n; K_{s,t}) \ge \left(\frac{1}{2} + o(1)\right) n^{2-1/s}$.

- ¹ P. Turán, Eine Extremalaufgave aus der Graphentheorie, *Math. Fiz Lapook* **48** (1941), 436-453.
- ² T. Kővári, V. T. Sós, and P. Turán, On a problem of K. Zarankiewicz, *Colloq. Math.* **3** (1954), 50-57.
- ³ I. Reimann, Uber ein Problem von K. Zarankiewicz, *Acta Math. Acad. Sci. Hung.* **9** (1959), 269-279.
- ⁴ Z. Füredi, On the number of edges of quadrilateral-free graphs *J. Comb. Theory Ser. B* **68** (1996), 1-6.
- ⁵ W. G. Brown, On graphs that do not contain a Thomsen graph, *Canad. Math. Bull.* **8** (1966), 281-285.
- ⁶ Z. Füredi, An upper bound on Zarankiexicz' problem, *Combin., Probab. Comput.* **5** (1996), 29-33.
- ⁷ N. Alon, L. Rónyai, and T. Szabó, Norm-graphs: variations and applications, *J. Combin. Theory Ser. B* **76** (1999), 280-290.

FORBIDDING $K^{(3)}(2, 2, 2)$

The definition of extremal numbers generalizes to hypergraphs, where even less is known. For the d-uniform d-partite hypergraphs $K^{(d)}(2,2,...,2)$, Erdős 8 showed that there exists a constant c_d for which $ex(n;K^{(d)}(2,2,...,2)) \leq c_d n^{d-\frac{1}{2^{d-1}}}$.

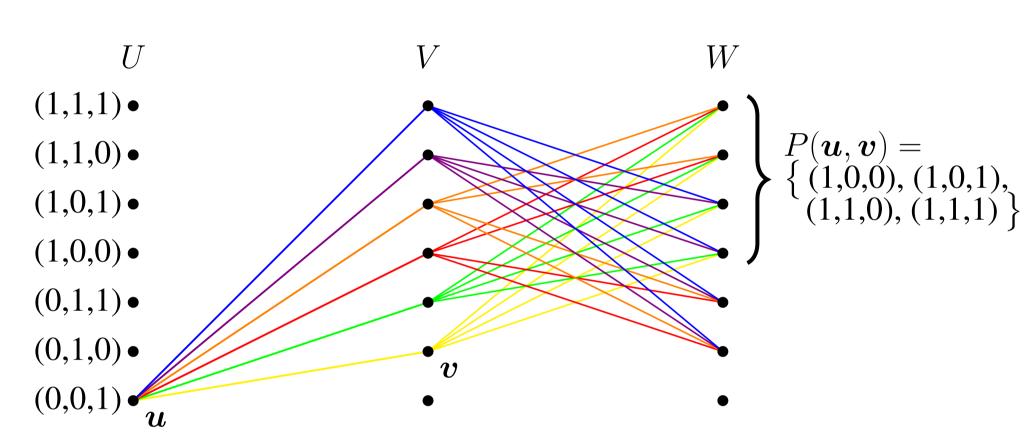
In 1999, Gunderson, Rödl, and Sidorenko⁹ used a probabilisite argument to show that

$$ex(n; K^{(3)}(2, 2, 2)) \ge (1 + o(1)) \frac{n^{13/5}}{4 \cdot 3^{8/5}}.$$

Their argument is extended to $K^{(d)}(2,2,...,2)$, where it achieves the best known lower bound when $d \ge 4$. However, the bound for $ex(n;K^{(3)}(2,2,2))$ can be improved with the construction below:

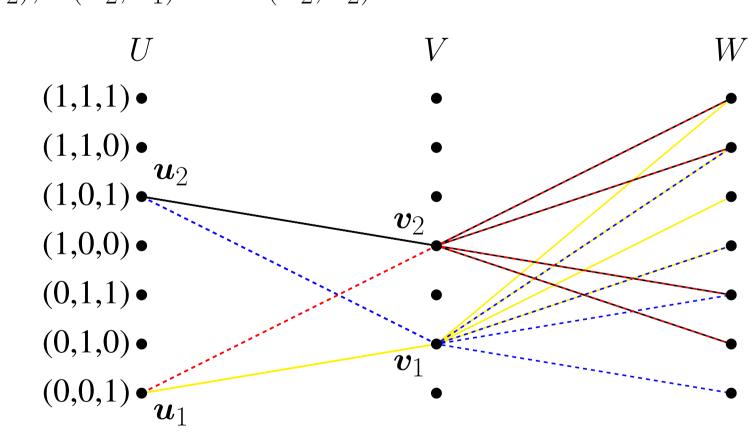
Definition 3 (Desmarais, D. Gunderson). For a prime power q, define a 3-uniform 3-partitle hypergraph $\mathcal{H} = (U \cup V \cup W, \mathcal{E})$ as follows:

- Let $U = V = W = \mathbb{F}_q^3 \setminus \{(0,0,0)\}$. H has $3(q^3 1)$ vertices.
- ullet For $oldsymbol{u}, oldsymbol{v} \in \mathbb{F}_q^3$, define the plane $P(oldsymbol{u}, oldsymbol{v}) = \{oldsymbol{w} \in \mathbb{F}_q^3 \mid oldsymbol{w} ullet (oldsymbol{u} imes oldsymbol{v}) = 1\}$.
- $\{u, v, w\} \in \mathcal{E}$ if and only if $w \in P(u, v)$. \mathcal{H} has $(q^3 1)(q^3 q)q^2$ hyperedges.



Construction for q = 2, with all hyperedges containing $(0, 0, 1) \in U$ shown.

The hypergraph \mathcal{H} is $K^{(3)}(2,2,2)$ -free since for any $\boldsymbol{u}_1,\boldsymbol{u}_2,\boldsymbol{v}_1$ and \boldsymbol{v}_2 , the four planes $P(\boldsymbol{u}_1,\boldsymbol{v}_1),P(\boldsymbol{u}_1,\boldsymbol{v}_2),P(\boldsymbol{u}_2,\boldsymbol{v}_1)$ and $P(\boldsymbol{u}_2,\boldsymbol{v}_2)$ intersect in at most 1 element.



The planes $P(\mathbf{u}_1, \mathbf{v}_1)$ in yellow, $P(\mathbf{u}_1, \mathbf{v}_2)$ in red, $P(\mathbf{u}_2, \mathbf{v}_1)$ in blue, and $P(\mathbf{u}_2, \mathbf{v}_2)$ in black.

Letting $n = 3(q^3 - 1)$, the construction above provides a bound of

$$ex(n; K^{(3)}(2, 2, 2)) \ge (1 + o(1)) \left(\frac{n}{3}\right)^{8/3}.$$

A construction similar to the one above achieving the same bound in the exponent was described by Katz, Kropp, and Maggioni in 2002^{10} , and another construction presented by Cilleruelo and Tesoro¹¹ also has the same bound.

FORBIDDING $K^{(3)}(2, 2, 3)$

Since $K^{(3)}(2,2,2)$ is a subgraph of $K^{(3)}(2,2,3)$, any lower bound for $ex(n;K^{(3)}(2,2,2))$ is also a bound for $ex(n;K^{(3)}(2,2,3))$. However, the coefficient in the bound can be improved with the following construction:

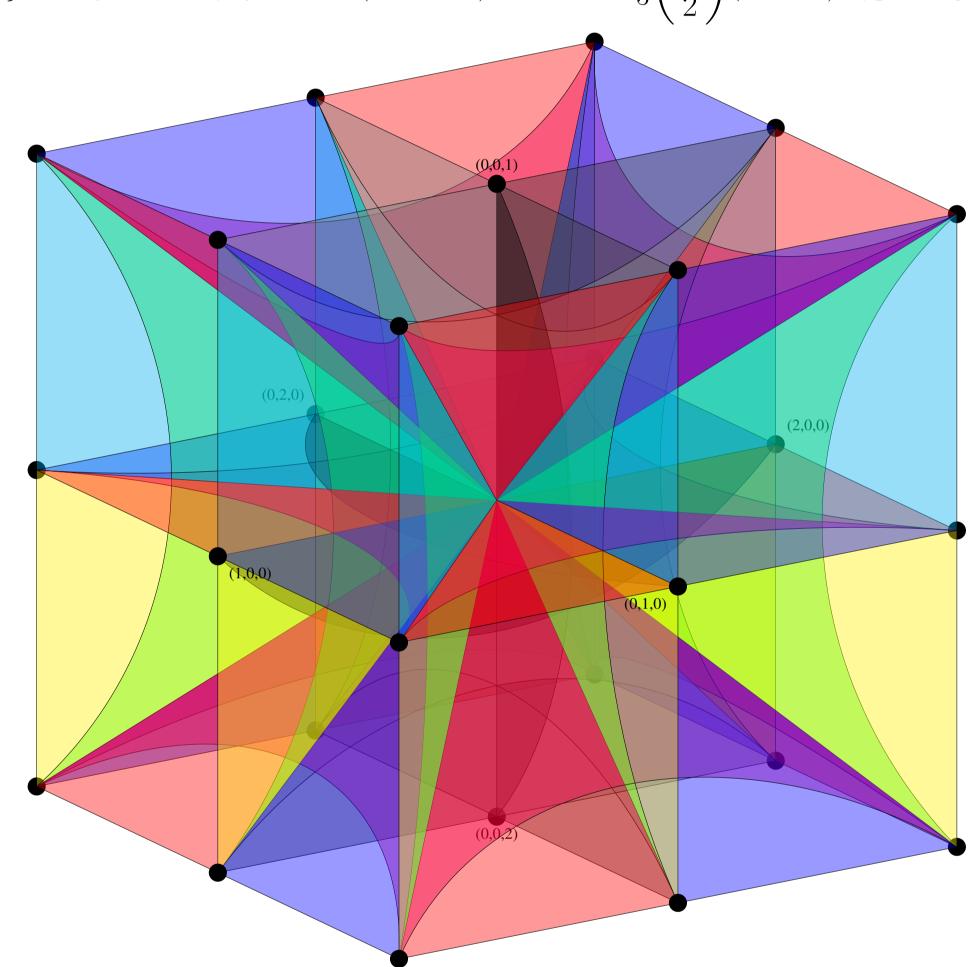
Definition 4 (Desmarais). Fix an odd prime p. Let $r \neq 0$ be a quadratic residue modulo p if $p \equiv 3 \pmod{4}$, and a quadratic nonresidue if $p \equiv 1 \pmod{4}$. Define the 3-uniform hypergraph $\mathcal{G} = (V, \mathcal{E})$ as follows:

- Let $V = \mathbb{F}_p^3 \setminus \{(0,0,0)\}$; then \mathcal{G} has p^3 vertices.
- For all $(a,b,c) \in \mathbb{F}_p^3$, define the sphere

$$S(a,b,c) = \{(x,y,z) \in \mathbb{F}_p^3 \mid (x-a)^2 + (y-b)^2 + (z-c)^2 \equiv r \pmod{p} \}.$$

These spheres have $p^2 - p$ elements.

• $\{u, v, w\} \in \mathcal{E}$ if and only if $w \in S(-v - u)$; there are $\frac{1}{3} {p^3 \choose 2} (p^2 - p)$ hyperedges.



Construction for p = 3, with all hyperedges containing $(0, 0, 0) \in V$ shown.

With $n = p^3$, the construction gives a lower bound of

$$ex(n; K^{(3)}(2, 2, 3)) \ge \left(\frac{1}{6} + o(1)\right) n^{8/3}.$$

A construction by Mubayi 2002^{12} that extends the $K_{3,3}$ -free constructions of Alon, Rónyai, and Szabó⁷ achieves this same bound, but improves on the o(1) factor.

Colin Desmarais
University of Manitoba
Department of Mathematics

ematics

EST.1877

Presented at EXCILL III
Illinois Institute of Technology
8 - 10 August 2016

⁸ P. Erdős, On extremal problems of graphs and generalized graphs, *Israel J. Math.* **2** (1964), 183-190.

⁹ D. S. Gunderson, V. Rödl, and A. Sidorenko, Extremal problems for sets forming Boolean algebras and complete partite hypergraphs, *J. Combin. Theory Ser. A.* **88** (1999), 342-367.

¹⁰ N. H. Katz, E. Krop, and M. Maggioni, Remarks on the box problem *Math. Res. Lett.* **9** (2002), 515-519.

¹¹ J. Cilleruelo and R. Tesoro, On sets free of sumsets with summands of prescribed size, Preprint arXiv:1504.00137, (2015).

¹² D. Mubayi, Some exact results and new asymptotics for hypergraph Túran numbers, *Combin., Prob. Comp.* **11** (2002), 299-309.